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Abstract—Lipase-catalyzed decyclization of hemiacetals of a-bromo-w-hydroxyaldehydes followed by trapping upon acetylation
was observed. Quantum chemical investigations were performed to explain the energetic background of the reactions. The
stereocontrolled synthesis of enantiopure trans-(25,3S5)-2-methoxy-tetrahydropyran-3-ol was elaborated. © 2002 Elsevier Science

Ltd. All rights reserved.

Deoxysugars play a significant role in living organisms
where they are mainly found as subunits of oligosac-
charide moieties of glycoconjugates. A number of dif-
ferent deoxymonosaccharides are present in antibiotics
and other physiologically active compounds. Because of
their pharmaceutical importance, the synthesis of
deoxysugars has become an important field of natural
product research.! Moreover, deoxysugars act as
efficient chiral auxiliaries,? probably because of the high
structural rigidity which is characteristic of carbohy-
drates and their deoxyanalogs.

On the other hand, studies of activation of (deoxy)-
saccharides by lipase probably allowing isomerization,
transfer, etc. of these moieties could be useful for
understanding the nature of these processes occurring
in some systems in vivo.

For the synthesis of alkyl glycosides of some deoxysug-
ars we chose a chemoenzymatic approach (Scheme 1)
consisting of three steps:

1. Bromohydroxylation® of 3,4-dihydro-2H-pyran
(DHP) (Scheme 1) and 2,3-dihydrofuran (DHF)
(Scheme 2).

2. Candida antarctica lipase B (CALB)-catalyzed
kinetic resolution** of enantiomers of a-bromo-m-

Keywords: lipase; deoxysugar alkyl glycoside; decyclization of hemi-
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hydroxyaldehydes®” upon acetylation or deacetyla-
tion followed by chromatography.

3. Treatment of optically resolved compounds (bromo-
hemiacetals or their acetates) with base in alcohol.®

The bromination® of DHP resulted in rac-1trans in high
yield (=90%), while DHF afforded rac-3trans in mod-
erate yield (~50%). The products'® are formed as trans
isomers according to the mechanism of the reaction.
Actually, we observed (by NMR, HPLC) the equilibria
between anomers characteristic of a certain structure. It
is probable that all the isomeric forms could exist
(including open-chain forms, despite our failure to
detect those experimentally) pictured as Set C (Scheme
1) and Set F (Scheme 2) in solution.

The single anomers obtained by HPLC separation were
observed to undergo a rapid re-establishment of the
initial equilibrium under the conditions used (rt; then
evaporation at 35°C under reduced pressure). The
dynamic equilibration observed explains the high dis-
crimination of the cis anomer along with a high total
yield of the products in both the chemical and enzy-
matic reactions performed. No cis isomer was detected
in the product of the lipase-catalyzed acetylation
(conv.: >98%) of bromohemiacetals: Set C—Set D
(Scheme 1). The optically pure material (Set A; (2R)-
2trans of Set D) was treated with LiOH in methanol
affording trans-glycoside (2S)-5trans upon the double
Sn2 process (Scheme 1) in >90% yield and >98% iso-
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Scheme 1. Synthesis of deoxysugar methyl glycoside (2S5)-5¢rans. Chemical and lipase-catalyzed acetylation (deacetylation) of

rac-2-bromo-5-hydroxypentanal.
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Scheme 2. Synthesis and chemical and lipase-catalyzed acetyl-
ation of rac-2-bromo-4-hydroxybutanal.

meric purity. In this reaction only the trans hemiacetal
anomer is reactive. The absolute configuration of (25)-
Strans was assigned by the results of the studies of
differential shielding effects observed in the NMR spec-

tra of THP-mandelate diastereomers'' confirming also
the absolute configuration of (2R)-1trans.

The chemical acetylation of bromohemiacetals (Set C—
Set B; Set F—Set E) resulted in isomeric stable acetates
of a nearly 3-4-fold diminished content of the cis
anomer.

The open-chain a-bromo-w-hydroxyaldehyde (2S5)-1u
together with some amount of (2R)-1u; (Scheme 1)
both of minute thermodynamic probability (Table 1)
were stabilized by CALB (Scheme 3) followed by trap-
ping of these isomeric forms by acetylation'? occurring
during the prolonged incubation (60 h; conversion rate
>98%), while the enantioselective acetylation (E>67)
of cyclic trans-hemiacetal (2R)-1trans was found to be
rapid (3 h; conversion rate=45%) under the same
conditions. In the case of C,-aldehyde hemiacetals
none of the isomeric cyclic acetates (of Set E) was
formed nor cleaved upon CALB-catalytic reactions!?
our hands. The product obtained from the lipase-cata-
lyzed acetylation in ~98% yield was an almost racemic
mixture of open-chain acetates (Set G).

QC calculations were performed in an attempt to
explain the anomer ratio dynamics as well as the logic
of acetylation of open-chain hydroxyaldehydes.

For all hemiacetals, open-chain aldehydes and the cor-
responding acetates (Table 1) an attempt to find con-
formers with minimum energy was made with the help
of Tinker’s'* SCAN program.
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Table 1. Thermodynamic characteristics calculated for the most probable conformers of isomeric forms of a-bromo-o-
hydroxyaldehydes and the corresponding acetates. Thermodynamic and experimentally (NMR) determined distribution of

isomeric forms for products of chemical synthesis

Set Compound Heat of formation Difference of heat of formation Percentage of an isomeric form
(kcal/mol) between conformers of all isomers
Calculated Experimental

C Ltrans —96.19 0.00 65.9 57

Lcis —95.66 0.53 34.1 43

lu —86.73 9.46 0.0 0.0
F 3trans —89.82 0.00 89.3 87.5

3cis —88.38 1.44 10.7 12.5

3u —81.23 8.59 0.0 0.0
B 2trans —137.34 0.00 26.6 90

2cis —136.80 0.54 10.6 10

2u —136.37 0.97 62.8 0.0
E 4trans —131.38 0.00 47.7 >96

4cis —128.99 2.39 1.4 <4

4u —130.26 1.12 50.9 0.0
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Scheme 3. Probable tetrahedral intermediate of CALB-cata-
lytic w-acetylation of (25)-2-bromo-5-hydroxypentanal. *: (1)
C, of acetyl docked to CALB; (2) oxygen atom (OA) of the
hydroxyl group (HG) of Thr40; (3) OA of the HG of Thr42;
(4) OA of the HG of Ser47. The distances between labeled
atoms: (1 and 2) 3.9 A; (1 and 3) 7.65 A; (1 and 4) 8.00 A.
The distances measured are based on the crystal structure of
CALB structure 1 TIB' acquired from Protein Data Bank.?°

This program performs a general conformational
search for the entire potential energy surface via a basin
hopping algorithm,'® and it also minimizes each con-
former after its generation. The force field chosen,
MM3,16 is known to be quite successful in reproducing
molecular IR spectra.

All the conformers generated were additionally mini-
mized using the Alchemy 2000!” program and the same
MM3 method therein. This was performed because the
MM3 force field within the latter program has improve-
ments upon Tinker’s version, viz. the anomeric and
Bohlmann correction terms'® have been implemented.

The percentage of isomeric forms in the equilibrium of
a-bromo-w-hydroxyaldehydes calculated for Set C and
Set F is in approximate agreement with experimental
results.

The chemical acetylation of a-bromo-w-hydroxyalde-
hydes as an isomeric equilibrium mixture of cyclic
hemiacetals afforded isomeric stable acetates of a
changed ratio. The content of cis acetates, 2cis and 4cis,
in the products (Set B and Set E, respectively) was
found to correspond to the thermodynamical distribu-
tion of isomeric acetates whereas instead of open-chain
acetates expected by calculation only trans acetates
were formed.

The cyclic trans hemiacetal (2R)-1trans favored by
lipase is acetylated by CALB rapidly, but even this
aldehyde enantiomer was partially acetylated as an
open-chain form, probably because of the presence of
the cis anomer not favored by CALB, thus allowing
coordination of the aldehyde molecule for transhemiac-
etalization/decyclization. Another aldehyde enantiomer
not favored by CALB, in both cyclic forms (hemiac-
etals), was almost totally acetylated as an open-chain
isomer.

Conclusions

1. The observed thermodynamic control of cis acetate
formation during the chemical acetylation suggests
that the activated intermediate complex of the hemi-
acetal acetylation has to proceed via an open- or
quasi-open-chain state allowing realization of
intramolecular interactions characteristic of acetate
molecules. By using chemical methods no acetyla-
tion of the w-OH group of the open-chain isomer of
any hydroxyaldehyde was observed.

2. During the enzymatic acetylation of the Cs-alde-
hyde (Set C) the 2S-enantiomer was stabilized by
the lipase as the open-chain isomer followed by
trapping by acetylation, while the 2R-enantiomer
afforded preferentially the cyclic trans acetate (2R)-
2trans. CALB-catalyzed acetylation of C,—aldehyde
(Set F) resulted in an almost racemic mixture of
open-chain acetates (Set G).
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3. The asymmetric chemoenzymatic synthesis of trans-
(25,3S5)-2-methoxy-tetrahydropyran-3-ol was ela-
borated.

4. Differences in the heat of formation between con-
formers of all isomers of 2-bromo-4-hydroxybutanal
and 2-bromo-5-hydroxypentanal allow the estima-
tion of the hemiacetal decyclization energies: 7.15-
8.59 kcal/mol for the C,-aldehyde and 8.93-9.46
kcal/mol for the Cs—aldehyde. These values corre-
spond to the total energies of 4-5 hydrogen bonds
seeming improbable even with the help of the ‘oxy-
anion hole’ of CALB?' which, besides, has to be
engaged in a simultaneous stabilization of the tetra-
hedral intermediate of acetylation of the -hydroxyl
group (involving Ser105).

5. Based on the results of measurements of molecular
geometry in the active site of CALB, we expect the
stabilization of the open-chain form of the hydroxy-
aldehyde molecule to occur covalently upon trans-
hemiacetalization with the hydroxyl group of
Thr40. (However, this process could be evoked by
initial influence of the ‘oxy-anion hole’ of lipase on
the hydroxyaldehyde.)
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